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Abstract
The low-density phase diagrams of charge-stabilized colloidal suspensions of
the Derjaguin–Landau–Verwey–Overbeek theory with an approximate effective
one-component Hamiltonian given by the volume term and effective pair
interactions, and of the classical theory (without including the volume term),are
obtained from the hypernetted-chain integral equation at low colloidal charges.
In the salt-free case both phase diagrams exhibit a vapour–liquid transition with
short-ranged colloid–colloid correlations. This phase separation is compared
to the vapour–liquid transition found in binary mixtures of highly asymmetrical
hard spheres.

1. Introduction

The archetypal model of a colloidal dispersion is an aqueous suspension of colloidal
(mesoscopic) particles with ionizable groups on their surface [1]. When they are dispersed in
a polar liquid such as water, some of the ionizable groups dissociate and colloidal particles
acquire an electric charge. Since the discharged counterions remain near the charged colloidal
particles, the result is the formation of an electric double layer surrounding the particles,
composed of the counterions and the ions of any salt added to the suspension. When two
colloidal particles approach each other, the overlap of these double layers causes an effective
repulsive force between the particles.

The mesoscopic size of the colloidal particles yields to characteristic length scales which
are widely separated from those of the small microions. Hence it seems natural to reduce
the multicomponent system into an effective one-component description involving only the
mesoscopic particles. This can be formally done by tracing out in the partition function
of the multicomponent system the coordinates and momenta of the microions leading to an
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exact effective one-component Hamiltonian for the mesoscopic particles which contains the
kinetic energy, the colloid–colloid direct interactions and a free-energy term [2]. By its
construction, the reduction to an exact effective one-component Hamiltonian preserves the
average value of the two-particle density dynamical function, i.e. the colloid–colloid pair
correlation function (pcf). Since the complexity of the multicomponent system with different
length scales is conserved in the exact effective one-component Hamiltonian, one needs to
resort to approximations in order to obtain a tractable expression for this quantity.

An approximate effective one-component Hamiltonian for an aqueous suspension of
spherical colloidal particles, of radius R and charge −Zeuniformly distributed over the particle
surface, and point-particle microions (counterions of charge +e and fully dissociated pairs of
monovalent salt ions of charge ±e,which cannot penetrate the interior of the colloidal particles)
has recently been obtained within a mean-field density-functional approach [3]. The solvent
is assumed to be a continuum of dielectric constant ε and the multicomponent Hamiltonian
consists of short-ranged (hard-sphere) repulsions and long-ranged Coulombic interactions.
The above analysis leads to an approximate effective one-component Hamiltonian:

H = F0(N, V , T ) +
1

2M

N∑
j=1

P2
j +

1

2

N∑
i=1

N∑
i �= j=1

V (|Ri − R j |; ρ, T ), (1)

where R j and P j ( j = 1, 2, . . . , N) are the coordinates and momenta of the colloidal particles
of mass M , F0(N, V , T ) is the volume term (with N the colloidal particle number, V the
volume, and T the temperature), and V (r; ρ, T ), with ρ = N/V , is the Derjaguin–Landau–
Verwey–Overbeek (DLVO) potential [4],

V (r; ρ, T ) = VHS(r) +
Z 2e2

ε

(
eκ R

1 + κ R

)2 e−κr

r
�(r − 2R). (2)

In (2) r is the interparticle distance, VHS(r) is the hard-sphere potential for particles of radius
R, �(x) is the Heaviside function and κ is the Debye screening parameter:

κ2 = 4πe2

εkBT
(Zρ + 2ρs), (3)

with kB the Boltzmann constant and ρs the density of the ions of an added monovalent salt. We
note that in (1) the effect of microion-mediated interactions between the colloidal particles,
which are present in the multicomponent Hamiltonian, is manifested via the volume term and
effective state-dependent interactions.

Although accurate measurements on a pair of charge-stabilized colloidal particles show
nothing but a pure repulsion in quantitative agreement with the DLVO potential [5], the
existence in the bulk of a vapour–liquid transition at extremely low salt concentrations has
been the subject of controversy in recent years [6]. In this paper we are concerned with the
low-density phase diagram resulting from the DLVO theory (1) and from the classical DLVO
theory (without including the volume term) at low colloidal charges.

2. A self-consistent thermodynamics

The lack in (1) of all n-particle (n � 3) effective interactions is, indeed, an approximation.
Note that the short-ranged colloid–colloid pcf g(r; ρ, T ) resulting from (1) only stems from
the repulsive DLVO potential. The reason for this is that the volume term and the kinetic energy
cancel in the average value of the two-particle density dynamical function. Although g(r; ρ, T )

differs from the colloid–colloid pcf in the multicomponent system, the main advantage of the
effective pair potential approximation seems to be that the well known equations that relate
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the structure to the thermodynamics for atomic pair potentials can be easily transposed to the
effective one-component description.

Let us denote by F(N, V , T ) the Helmholtz free energy in the effective one-component
description (1), i.e.

F(N, V , T ) = F0(N, V , T ) + F id(N, V , T ) + Fex(N, V , T ), (4)

where F id(N, V , T ) and Fex(N, V , T ) are the ideal and the excess parts of the Helmholtz
free energy of a system of particles interacting with the DLVO potential. We note that
Fex(N, V , T ) depends, as for atomic systems, on N, V and T (explicit dependences) but
also includes additional N, V and T dependences (implicit dependences) induced through the
DLVO potential. When the excess contribution is viewed as a functional of the pair potential
Fex(N, V , T ) ≡ Fex[V (r; ρ, T )], the two-particle density ρ2(r, r′; ρ, T ) is

ρ2(r, r′; ρ, T ) = 2
δFex[V (|r − r′|; ρ, T )]

δV (|r − r′|; ρ, T )
, (5)

which is a simple transposition of the well known equation for state-independent pair
potentials [7], since ρ and T appear in V (r; ρ, T ) as parameters. Integrating (5) following a
linear path of integration αV (r; ρ, T ) (0 � α � 1) between the ideal gas (α = 0) and the actual
fluid (α = 1) and taking into account that for a uniform phase ρ2(r; ρ, T ) = ρ2g(r; ρ, T ),
the free energy per particle in the thermodynamic limit reads

f (ρ, T ) = f0(ρ, T ) + kBT [ln(ρ�3) − 1] + 1
2ρ

∫ 1

0
dα

∫
dr g(r; ρ, T |α)V (r; ρ, T ), (6)

where f0(ρ, T ) = F0(T, V , N)/N , � is the thermal de Broglie wavelength of the colloidal
particles and g(r; ρ, T |α) denotes the pcf for the fluid with potential αV (r; ρ, T ).

From the thermodynamic relations,

p(ρ, T ) = ρ2 ∂ f (ρ, T )

∂ρ
; u(ρ, T ) = f (ρ, T ) − T

∂ f (ρ, T )

∂T
, (7)

where p(ρ, T ) is the pressure and u(ρ, T ) is the internal energy per particle, we obviously
conclude that because of the implicit dependences neither the virial equation nor the energy
equation for atomic fluids hold in the effective one-component description. From (6) and (7),
a standard calculation yields the equation of state:

p(ρ, T ) = p0(ρ, T ) + ρkBT − 1

6
ρ2

∫
dr g(r; ρ, T )r

∂

∂r
Vp(r; ρ, T ), (8)

where p0(ρ, T ) is the contribution of the volume term,

Vp(r; ρ, T ) = VHS(r) + V̄p(r; ρ, T )�(r − 2R), (9)

and

V̄p(r; ρ, T ) = Z 2e2

ε

(
eκ R

1 + κ R

)2 3κ2 R2

1 + κ R

[
e−κr

r
− κ
(0, κr)

]

+
Z 2e2

ε

(
eκ R

1 + κ R

)2[e−κr

r
− 3

2
κ
(0, κr)

]
, (10)

where 
(0, x) = ∫ ∞
x dt t−1e−t is the incomplete gamma function. We point out that the last

two terms in (8) are nothing but an exact transformation of the Ascarelli–Harrison equation of
state first applied to the case of liquid metals [8].

From (6) and (7) the energy equation reads

u(ρ, T ) = u0(ρ, T ) + 3
2 kBT + 1

2ρ

∫
dr g(r; ρ, T )Vu(r; ρ, T ), (11)
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where u0(ρ, T ) is the contribution of the volume term,

Vu(r; ρ, T ) = VHS(r) + V̄u(r; ρ, T )�(r − 2R), (12)

and

V̄u(r; ρ, T ) = Z 2e2

ε

(
eκ R

1 + κ R

)2(
1 +

κ2 R2

1 + κ R

)
e−κr

r
− Z 2e2

2ε

(
eκ R

1 + κ R

)2

κe−κr . (13)

The last two terms in the rhs of (6), (8) and (11) look like the free energy, the virial and the
energy equations for atomic fluids but with different state-dependent potentials. Although the
structure and the complete thermodynamics results from the DLVO potential, it could be said
that the structure is determined from V (r; ρ, T ), the phase diagram from Vp(r; ρ, T ) and the
internal energy from Vu(r; ρ, T ). The new potentials Vp(r; ρ, T ) and Vu(r; ρ, T ) guarantee
a self-consistent thermodynamics in the effective one-component description. We also note
that from Vp(r; ρ, T ) or Vu(r; ρ, T ) neither the structure nor the complete thermodynamics
can be reproduced.

3. The Debye–Hückel fluid

We first consider the case of point particles (R = 0) without including the volume term.
The phase diagram for particles interacting with the Debye–Hückel pair potential has been
extensively studied in the literature. From (2), (10) and (13) we have

V (r; ρ, T ) = Z 2e2

ε

e−κr

r
, (14)

Vp(r; ρ, T ) = Z 2e2

ε

[
e−κr

r
− 3

2
κ
(0, κr)

]
, (15)

and

Vu(r; ρ, T ) = Z 2e2

ε

[
e−κr

r
− 1

2
κe−κr

]
, (16)

that is, despite the purely repulsive nature of the Debye–Hückel potential, both Vp(r; ρ, T )

and Vu(r; ρ, T ) contain an attractive contribution.
Computer simulations [9] show that in the high-salt limit 2ρs � Zρ the phase diagram

contains three phases, namely fluid, a body-centred cubic (bcc) crystal, and a face-centred cubic
(fcc) crystal, the full phase diagram consisting of two melting lines (fluid–bcc and fluid–fcc)
and a structural transition (bcc–fcc). In the low-salt limit 2ρs � Zρ the phase diagram obtained
from Monte Carlo simulations contains a vapour–liquid transition [10], while no evidence for a
stable crystalline phase is found. This phase separation, in a fluid with purely repulsive forces,
does not escape however the classical van der Waals picture since the phase diagram results
from Vp(r; ρ, T ) which contains a long-ranged attraction. Since Vp(r; ρ; T ) > 0 (r < r0) and
Vp(r; ρ; T ) < 0 (r > r0), with κr0 � 1.45, when the salt density increases the repulsions are
favoured over the attractions; that is, the addition of salt lowers the vapour–liquid critical point,
favouring the fluid phase in the phase diagram. This can be easily shown within a mean-field
approach, i.e. g(r; ρ, T ) � 0 for r < a, with a the average interparticle distance a3 = 1/ρ,
and g(r; ρ, T ) � 1 for r > a. We use as independent variables the charge number Z (Z−2

playing the role of the temperature T ) and q = κa (with q−3 the average number of particles
in a cubic box of length κ−1), while ξ = 2ρs/Zρ is treated as a free parameter. The phase
diagram resulting from (8) and (15) exhibits a vapour–liquid transition, the critical point being
located at Zc = 21.6 and qc = 1.73 for ξ = 0 and at Zc = 305.6 and qc = 6.61 for ξ = 0.25.
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Figure 1. Reduced excess free energy per particle β f ex ≡ β f ex(ρ, T ) versus q of the Debye–
Hückel fluid as obtained from HNC (full curve) and from thermodynamical integration of the virial
equation (full dots) for Z = 20 and 30.

We observe that when ξ changes from ξ = 0 to 0.25 the Debye screening parameter increases
by a factor of 1.12 whereas the critical temperature decreases by a factor of 5 × 10−3; i.e. the
addition of salt dramatically lowers the critical temperature.

To end this section we consider the salt-free case ξ = 0. The structure has been determined
from the hypernetted-chain (HNC) integral equation:

ln g(r; ρ, T ) = −βV (r; ρ, T ) + h(r; ρ, T ) − c(r; ρ, T ), (17)

with c(r; ρ, T ) the direct correlation function (dcf) and h(r; ρ, T ) = g(r; ρ, T ) − 1 the total
correlation function (tcf). Within the HNC integral equation the excess free energy f ex(ρ, T )

can be expressed in terms of the tcf, the dcf and their Fourier transforms h̃(k; ρ, T ) and
c̃(k; ρ, T ) [11]:

β f ex(ρ, T ) = 1

2
ρ

∫
dr A(r; ρ, T ) +

1

16π3ρ

∫
dk B(k; ρ, T ), (18)

where

A(r; ρ, T ) = c(r; ρ, T ) + h(r; ρ, T )[c(r; ρ, T ) − 1
2 h(r; ρ, T )], (19)

and

B(k; ρ, T ) = ln[1 − ρc̃(k; ρ, T )] + ρh̃(k; ρ, T ). (20)

From the virial and the energy equations f ex(ρ, T ) can also be obtained by
thermodynamical integration of (7)Note 4. In figures 1 and 2 the high degree of thermodynamical
consistency of the HNC route and the virial and the energy routes is shown. In figure 3 the
phase diagrams in the (q, Z ) plane as obtained from mean-field theory, i.e.

βp(ρ, T ) = ρ[1 − 1
12 Zq2e−q], (21)

with q = √
4πλZρa and λ = e2/εkBT the Bjerrum length, and from the HNC integral equation

are compared to the Monte Carlo simulation results by Dijkstra and van Roij [10]. Note that
although the lack of attractions in V (r; ρ, T ) precludes the divergence of correlations, the HNC
integral equation captures a vapour–liquid transition indicating that the density dependence of
the Debye–Hückel potential is responsible for driving the fluid towards the phase separation.

4 In each case the integration constant can be separately set equal to zero.
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Figure 2. Reduced excess free energy per particle β f ex ≡ β f ex(ρ, T ) versus Z of the Debye–
Hückel fluid as obtained from HNC (full curve) and from thermodynamical integration of the
energy equation (full dots) for q = 1 and 3.

Figure 3. Phase diagram in the q–Z plane of the Debye–Hückel fluid as obtained from mean-field
theory (broken curve) and from HNC (full curve). The full dots denote the Monte Carlo simulation
results by Dijkstra and van Roij.

This somewhat academic problem5 illustrates that the thermodynamic states for which the
compressibility diverges are not associated in the effective one-component description with
long-ranged correlations. As explained elsewhere, the thermodynamical self-consistency
implies that the compressibility equation for atomic fluids has also to be modified for density-
dependent interactions [12].

4. Binary mixtures versus HNC–DLVO

Salt-free binary mixtures of highly asymmetrical charged hard spheres are known to exhibit
a phase separation at very low concentrations [13]. In this section the structure and the

5 Inside the coexistence curve the phase diagram exhibits a region of negative pressures which contains the liquid
spinodal. These anomalous properties can be analytically determined within the mean-field approach (21).
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Figure 4. Colloid–colloid pcf g(r) ≡ g(r; ρ, T ) versus the reduced distance r/λ for Z = 20,
R/λ = 2.5 and q = 1 as obtained from the classical HNC–DLVO (full curve) and from CGHNC
(thin full curve).

Figure 5. The same as in figure 4 for q = 3.

thermodynamics of a binary mixture of hard-sphere colloidal particles of radius R and charge
−Ze and point-particle monovalent counterions are obtained using a recently proposed coarse-
graining hypernetted-chain (CGHNC) integral equation approach [14]. This procedure is
designed to obtain efficiently the colloid–colloid structure and effective pair potentials starting
from a multicomponent description. The results are compared to HNC (17)–(20), with
V (r; ρ, T ) the DLVO potential, in the salt-free case effective one-component description (1).

In figures 4–6 we plot the colloid–colloid pcf as obtained from CGHNC and from the
classical (without including the volume term) HNC–DLVO as a function of the reduced distance
r/λ for Z = 20 and R/λ = 2.5 at several densities. It is seen that at q = 1 and 5.8 both
approaches agree quite well. However, in the vicinity of the classical HNC–DLVO critical
region q = 3 (see figure 7) significant differences are found.

In figure 7 the phase diagram in the q–Z plane as obtained from the classical HNC–DLVO
theory and from the HNC–DLVO theory is shown. In the salt-free case, the contribution of
the volume term to the pressure in (8) is given by

p0(ρ, T ) = ZρkBT

[
1 − 1

4
Z

κ R

(1 + κ R)2

(
λ

R

)]
, (22)
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Figure 6. The same as in figure 4 for q = 5.8.

Figure 7. Phase diagram in the q–Z plane of the HNC–DLVO fluid (full dots and full curve) and
of the classical HNC–DLVO fluid (full dots and broken curve) for R/λ = 2 and 2.5.

which consists of the ideal gas pressure of the counterions and the contribution coming from
the self-energy of the N electric double layers associated with the individual mesoscopic
particles [3]. In both cases, a vapour–liquid transition is found. Moreover, it is seen that
the volume term shifts the critical point to higher Z and q and that by increasing R/λ

the volume term dominates the phase separation, the density-dependent screening DLVO
mechanism playing only a minor role. Within the CGHNC we have been unable to obtain
the coexistence region since at very low densities the correlations become long ranged and
convergence problems arise.

In figure 8 the normalized isothermal compressibility of the CGHNC is compared to HNC–
DLVO for R/λ = 2.5. It is seen that at low charges the effective one-component description is
a quite good approximation but fails as Z increases. In all cases HNC–DLVO underestimates
the isothermal compressibility.

In figure 9 the HNC–DLVO phase diagram in theη–R/λ plane is shown for Z = 10, 15 and
20. It is seen that the critical packing fraction seems to be nearly independent of Z (ηc � 0.006)
and that the critical radius Rc/λ is nearly linear in Z . Our findings are in qualitative agreement
with [13].
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Figure 8. Reduced isothermal compressibility χ/χ id versus the colloid packing fraction η for
R/λ = 2.5 as obtained from HNC–DLVO (full curve) and from CGHNC (full dots and broken
curve) for (from bottom to top) Z = 17, 25, 32 and 36.

Figure 9. Phase diagram in the η–R/λ plane of the HNC–DLVO fluid for Z = 10, 15 and 20.

5. Conclusions

The existence in the bulk of an effective attraction between like-charged colloidal particles in
a binary mixture of highly asymmetrical charged hard spheres is controversial [15]. In the
salt-free case this effective attraction would yield a vapour–liquid transition and, according
to the compressibility equation, the approach of the critical point would imply long-ranged
colloid–colloid pcf. When the mixture is replaced by an effective one-component description
involving only the mesoscopic particles, this property holds if the counterions are traced
out in the partition function and colloidal particles are assumed to interact with the exact
effective one-component Hamiltonian. Since the complexity of the mixture is preserved in
the exact effective one-component Hamiltonian, one needs to resort to approximations in
order to find a simple expression for this quantity. The replacement of the exact effective
one-component Hamiltonian by an approximate effective one-component Hamiltonian with
pairwise state-dependent DLVO interactions V (r; ρ, T ) has, however, deep consequences. It
is worth noting that in the approximate effective one-component description we have a short-
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ranged colloid–colloid pcf all over the phase diagram because of the repulsive nature of the
DLVO potential. This is indeed a poor approximation for the colloid–colloid pcf in the mixture
when a spinodal line or the critical point is approached, although away from the coexistence
region the approximate pcf may be a quite good approximation of the exact pcf. Nevertheless
we have shown that, even without including the volume term, HNC–DLVO captures a vapour–
liquid transition indicating that the density dependence of the DLVO potential is responsible for
driving the fluid towards the phase separation. By increasing the radius of the colloidal particle,
this phase separation is dominated by the volume term,the DLVO screening mechanism playing
only a minor role. Unfortunately, we have been unable to determine the vapour–liquid transition
within CGHNC in order to compare it to the phase separation resulting from HNC–DLVO.

In this paper we have also analysed the thermodynamics resulting from the DLVO
theory (1). The procedure outlined here follows the standard methods in equilibrium
statistical mechanics. From the approximate effective one-component Hamiltonian, one
first determines the Helmholtz free energy, the remaining thermodynamic quantities being
found using elementary thermodynamic relations. This is the only way to guarantee a self-
consistent thermodynamics within the effective one-component description. We have shown
that (when discarding the volume term) the virial and the energy equations look like their atomic
counterparts but with different state-dependent potentials Vp(r; ρ, T ) and Vu(r; ρ, T ). Despite
the purely repulsive nature of the DLVO potential, both Vp(r; ρ, T ) and Vu(r; ρ, T ) contain an
attractive contribution. The long-ranged attraction in Vp(r; ρ, T ) agrees with the classical van
der Waals picture and the virial equation reproduces the HNC–DLVO vapour–liquid transition.
As a consequence, the standard compressibility equation no longer holds in the effective one-
component description. We point out that the basic principle of the compressibility equation
for atomic fluids involves a charging process of the density at constant interactions [7]. For
the DLVO potential when the fluid is charged with respect to the density it is simultaneously
charged with respect to the interactions and this explains why the compressibility equation
has also to be modified in order to yield a self-consistent thermodynamics [12]. Therefore,
using the virial, the energy and the compressibility equations for atomic fluids in the effective
one-component description would lead to thermodynamical inconsistencies [16].

In summary, the DLVO theory provides an effective one-component description which
captures most of the experimental and simulation topics of charge-stabilized colloidal
suspensions. The price to be paid is that the well established equations for atomic fluids
have to be modified.
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